
GCSE
COMPUTER
SCIENCE
(8525)
Specification
For teaching from September 2025 onwards
For GCSE exams in 2027 onwards
Version 1.3 16 June 2025

Contents

1 Introduction 5
1.1 Why choose AQA for GCSE Computer Science 5
1.2 Support and resources to help you teach 5

2 Specification at a glance 7
2.1 Subject content 7
2.2 Assessments 7

3 Subject content 9
3.1 Fundamentals of algorithms 10
3.2 Programming 11
3.3 Fundamentals of data representation 18
3.4 Computer systems 22
3.5 Fundamentals of computer networks 27
3.6 Cyber security 29
3.7 Relational databases and structured query language

(SQL) 31
3.8 Ethical, legal and environmental impacts of digital

technology on wider society, including issues of
privacy 33

4 Scheme of assessment 35
4.1 Aims and learning outcomes 35
4.2 Assessment objectives 35
4.3 Assessment weightings 36

5 Programming skills 37
5.1 Programming skills authentication 37
5.2 Avoiding malpractice 37

6 General administration 39
6.1 Entries and codes 39
6.2 Overlaps with other qualifications 39
6.3 Awarding grades and reporting results 39
6.4 Resits and shelf life 40
6.5 Previous learning and prerequisites 40
6.6 Access to assessment: diversity and inclusion 40
6.7 Working with AQA for the first time 41
6.8 Private candidates 41

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 3

http://aqa.org.uk/8525

Are you using the latest version of this specification?
• You will always find the most up-to-date version of this specification on our website at

aqa.org.uk/8525
• We will write to you if there are significant changes to the specification.

4 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525
http://aqa.org.uk/8525

1 Introduction
1.1 Why choose AQA for GCSE Computer Science
We’ve worked closely with teachers to develop a GCSE Computer Science specification that’s as
inspiring to teach as it is to learn. This specification recognises the well-established methodologies
of computing, alongside the technological advances which make it such a dynamic subject.

We’ve built on the most popular aspects of our current specification and added fresh features
including a programming exam to provide a programme of study for students of all ability levels.
You can choose from a range of programming languages, enabling you to tailor your teaching to
the strengths and preferences of yourself and your students.

Our exam papers retain our commitment to clear wording and structure, helping students to
progress through each paper with confidence.

Students will complete this course equipped with the logical and computational skills necessary to
succeed at A-level, the workplace or beyond.

As part of our ongoing commitment to provide excellent support, you’ll see we’ve created fantastic
free teaching resources and can offer great value professional development courses. We’re also
collaborating with publishers to ensure you have engaging and easy-to-use textbooks.

You can find out about all our Computer Science qualifications at aqa.org.uk/computer-science

1.2 Support and resources to help you teach
We’ve worked with experienced teachers to provide you with a range of resources that will help
you confidently plan, teach and prepare for exams.

1.2.1 Teaching resources
Visit aqa.org.uk/8525 to see all our teaching resources. They include:

• sample papers and mark schemes to show the standards required and how your students’
papers will be marked

• schemes of work and lesson plans to help you plan your course with confidence
• easy-to-use, AQA approved textbooks
• phone and email based subject team to support you in the delivery of the specification
• excellent professional development opportunities for those just starting out or the more

experienced, looking for fresh inspiration
• training courses to help you deliver our computer science qualifications.

Preparing for exams
Visit aqa.org.uk/8525 for everything you need to prepare for our exams, including:

• past papers, mark schemes and examiner reports
• Exampro: a searchable bank of past AQA exam questions
• example student answers with examiner commentaries.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 5

http://www.aqa.org.uk/computer-science
http://www.aqa.org.uk/8525
http://www.aqa.org.uk/8525
http://aqa.org.uk/8525

Analyse your students' results with Data Insights
We’ve replaced Enhanced Results Analysis (ERA) with a new platform – Data Insights. It does the
same things as ERA – and more.

Find out which questions were the most challenging, how the results compare to previous years
and where your students need to improve. Data Insights, our free online results analysis tool, will
help you see where to focus your teaching. Find out more at aqa.org.uk/data-insights

For information about results, including maintaining standards over time, grade boundaries and our
post-results services, visit aqa.org.uk/results

Keep your skills up-to-date with professional development
Time in the classroom is precious, but we understand that as your career develops, the skills and
knowledge you need may change. As well as subject-specific training, we offer a range of courses
to help boost your skills.

• Feedback sessions to understand how students have performed in this year’s exams.
• Virtual communities where you can chat to teachers in your subject area about what’s

important to you.

This is just the start. Our events calendar is full of different ways for you to learn, understand and
be inspired. Find out more at aqa.org.uk/professional-development.

Help and support
Visit our website for information, guidance, support and resources at aqa.org.uk/8525

If you'd like us to share news and information about this qualification, sign up for emails and
updates at aqa.org.uk/from-2017

Alternatively, you can call or email our subject team direct.

E: computerscience@aqa.org.uk

T: 0161 957 3980

6 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://www.aqa.org.uk/contact-us/secure-services/data-insights
http://www.aqa.org.uk/results
https://www.aqa.org.uk/professional-development
http://www.aqa.org.uk/8525
http://www.aqa.org.uk/from-2017
mailto:computerscience@aqa.org.uk
http://aqa.org.uk/8525

2 Specification at a glance
This qualification is linear. Linear means that students will sit all their exams at the end of the
course.

2.1 Subject content
• 3.1 Fundamentals of algorithms (page 10)
• 3.2 Programming (page 11)
• 3.3 Fundamentals of data representation (page 18)
• 3.4 Computer systems (page 22)
• 3.5 Fundamentals of computer networks (page 27)
• 3.6 Cyber security (page 29)
• 3.7 Relational databases and structured query language (SQL) (page 31)
• 3.8 Ethical, legal and environmental impacts of digital technology on wider society, including

issues of privacy (page 33)

2.2 Assessments
Paper 1: Computational thinking and programming skills

What's assessed

Computational thinking, code tracing, problem-solving, programming concepts including the
design of effective algorithms and the designing, writing, testing and refining of code.

The content for this assessment will be drawn from subject content 3.1 and 3.2 above.

How it's assessed

• Written exam: 2 hours
• 90 marks
• 50% of GCSE

Questions

A mix of multiple choice, short answer and longer answer questions assessing programming,
practical problem-solving and computational thinking skills.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 7

http://aqa.org.uk/8525

Paper 2: Computing concepts

What's assessed

The content for this assessment will be drawn from subject content 3.3 to 3.8 above.

How it's assessed

• Written exam: 1 hour 45 minutes
• 90 marks
• 50% of GCSE

Questions

A mix of multiple choice, short answer, longer answer and extended response questions
assessing SQL programming skills and theoretical knowledge.

8 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3 Subject content
This subject content should be taught within a range of realistic contexts based around the major
themes in the specification. To gain the most from the specification, a number of the sections will
benefit from being taught holistically. For example, algorithms could be taught alongside
programming techniques as there is a close relationship between them.

The specification content in Sections 3.1–3.8 is presented in a two-column format. The left hand
column contains the specification content that all students must cover and that is assessed in the
written papers. The right hand column exemplifies the additional information that teachers will
require to ensure that their students study the topic in an appropriate depth and, where
appropriate, gives teachers the parameters in which the subject will be assessed.

The skills, knowledge and understanding from all of the subject content within the specification will
be assumed in all assessments. Both assessments may contain synoptic questions that will require
students to use their skills, knowledge and understanding from across the entire specification. For
example, whilst the understanding of binary numbers will be directly assessed in paper 2, the
underlying knowledge and principles may be indirectly required for questions in paper 1.

For exams from 2027, we will support the following programming languages:

• C#
• Python (version 3)
• VB.NET.

In paper 1 students will be required to design, write, test and refine program code in one of the
three languages above.

In preparation for paper 1, students should have sufficient practical experience of:

• structuring programs into modular parts with clear documented interfaces to enable them to
design appropriate modular structures for solutions

• including authentication and data validation systems/routines within their computer programs
• writing, debugging and testing programs to enable them to develop the skills to articulate how

programs work and argue using logical reasoning for the correctness of programs in solving
specified problems

• designing and applying test data (normal, boundary and erroneous) to the testing of
programs so that they are familiar with these test data types and the purpose of testing

• refining programs in response to testing outcomes.

In preparation for paper 2 students should have sufficient practical experience of writing and
refining SQL.

Students should be given as much opportunity as possible to practise their programming skills in
the school or college's chosen language and SQL.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 9

http://aqa.org.uk/8525

3.1 Fundamentals of algorithms

3.1.1 Representing algorithms

Content Additional information

Understand and explain the term algorithm. An algorithm is a sequence of steps that can be
followed to complete a task.

Be aware that a computer program is an
implementation of an algorithm and that an
algorithm is not a computer program.

Understand and explain the term
decomposition.

Decomposition means breaking a problem into
a number of sub-problems, so that each sub-
problem accomplishes an identifiable task,
which might itself be further subdivided.

Understand and explain the term abstraction. Abstraction is the process of removing
unnecessary detail from a problem.

Use a systematic approach to problem solving
and algorithm creation representing those
algorithms using pseudo-code, program code
and flowcharts.

Any exam question where students are given
pseudo-code will use the AQA standard
version.

Exam questions will indicate the form of
response expected. For example, pseudo-code,
program code or a flowchart.

Explain simple algorithms in terms of their
inputs, processing and outputs.

Students must be able to identify where inputs,
processing and outputs are taking place within
an algorithm.

Determine the purpose of simple algorithms. Students should be able to use trace tables and
visual inspection to determine how simple
algorithms work and what their purpose is.

3.1.2 Efficiency of algorithms

Content Additional information

Understand that more than one algorithm can
be used to solve the same problem.

Compare the efficiency of algorithms explaining
how some algorithms are more efficient than
others in solving the same problem.

Formal comparisons of algorithmic efficiency
are not required.

Exam questions in this area will only refer to
time efficiency.

10 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3.1.3 Searching algorithms

Content Additional information

Understand and explain how the linear search
algorithm works.

Students should know the mechanics of the
algorithm.

Understand and explain how the binary search
algorithm works.

Students should know the mechanics of the
algorithm.

Compare and contrast linear and binary search
algorithms.

Students should know the advantages and
disadvantages of both algorithms.

3.1.4 Sorting algorithms

Content Additional information

Understand and explain how the merge sort
algorithm works.

Students should know the mechanics of the
algorithm.

Understand and explain how the bubble sort
algorithm works.

Students should know the mechanics of the
algorithm.

Compare and contrast merge sort and bubble
sort algorithms.

Students should know the advantages and
disadvantages of both algorithms.

3.2 Programming
Students need a theoretical understanding of all the topics in this section for the paper 1 exam
even if the programming language(s) taught does not support all of the topics. Exams will always
present algorithms using the current version of the AQA pseudo-code. The document can be found
on the AQA website.

Students need a practical understanding of all the topics and skills in this section for the paper 1
exam. When they are writing computer programs in an exam they will need to ensure they use
meaningful identifier names, use suitable data types and that all logic flow is clearly identifiable to
examiners.

Exam questions will explicitly state in what form the response needs to be provided. This will be,
for example, pseudo-code, program code or a flowchart, and students must respond as instructed.
Where pseudo-code is an accepted method of response, students may present their answers to
questions in any suitable format and do not need to use the AQA pseudo-code.

3.2.1 Data types

Content Additional information

Understand the concept of a data type.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 11

http://aqa.org.uk/8525

Content Additional information

Understand and use the following appropriately:

• integer
• real
• Boolean
• character
• string.

Depending on the actual programming
language(s) being used, these data types may
have other names. For example real numbers
may be described as float. In exams we will use
the general names given opposite.

3.2.2 Programming concepts

Content Additional information

Use, understand and know how the following
statement types can be combined in programs:

• variable declaration
• constant declaration
• assignment
• iteration
• selection
• subroutine (procedure/function).

The three combining principles (sequence,
iteration/repetition and selection/choice) are
basic to all high-level imperative programming
languages.

Students should be able to write programs
using these statement types. They should be
able to interpret and write algorithms that
include these statement types.

Students should know why named constants
and variables are used.

12 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

Content Additional information

Use definite (count controlled) and indefinite
(condition controlled) iteration, including
indefinite iteration with the condition(s) at the
start or the end of the iterative structure.

A theoretical understanding of condition(s) at
either end of an iterative structure is required,
regardless of whether they are supported by the
language(s) being used.

An example of definite (count controlled)
iteration would be:

FOR i ← 1 TO 5
 … Instructions here …
ENDFOR

An example of indefinite (condition controlled)
iteration with the condition at the start would be:

WHILE NotSolved
 … Instructions here …
ENDWHILE

Examples of indefinite (condition controlled)
iteration with the condition at the end would be:

REPEAT
 … Instructions here …
UNTIL Solved

DO
 … Instructions here …
WHILE NotSolved

Use nested selection and nested iteration
structures.

An example of nested iteration would be:

WHILE NotSolved
 … Instructions here ...
 FOR i ← 1 TO 5
 … Instructions here …
 ENDFOR
 … Instructions here …
ENDWHILE

An example of nested selection would be:

IF GameWon THEN
 … Instructions here …
 IF Score > HighScore THEN
 … Instructions here …
 ENDIF
 … Instructions here …
ENDIF

Use meaningful identifier names and know why
it is important to use them.

Identifier names include names for variables,
constants and subroutine names.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 13

http://aqa.org.uk/8525

3.2.3 Arithmetic operations in a programming language

Content Additional information

Be familiar with and be able to use:

• addition
• subtraction
• multiplication
• real division
• integer division, including remainders.

Integer division, including remainders, is usually
a two stage process and uses modular
arithmetic:

eg the calculation 11/2 would generate the
following values:

Integer division: the integer quotient of 11
divided by 2 (11 DIV 2) = 5

Remainder: the remainder when 11 is divided
by 2 (11 MOD 2) = 1

3.2.4 Relational operations in a programming language

Content Additional information

Be familiar with and be able to use:

• equal to
• not equal to
• less than
• greater than
• less than or equal to
• greater than or equal to.

Students should be able to use these operators
within their own programs and be able to
interpret them when used within algorithms.
Note that different languages may use different
symbols to represent these operators.

3.2.5 Boolean operations in a programming language

Content Additional information

Be familiar with and be able to use:

• NOT
• AND
• OR.

Students should be able to use these operators,
and combinations of these operators, within
conditions for iterative and selection structures.

3.2.6 Data structures

Content Additional information

Understand the concept of data structures. It may be helpful to set the concept of a data
structure in various contexts that students may
already be familiar with. It may also be helpful
to suggest/demonstrate how data structures
could be used in a practical setting.

14 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

Content Additional information

Use arrays (or equivalent) in the design of
solutions to simple problems.

Only one and two-dimensional arrays are
required.

Use records (or equivalent) in the design of
solutions to simple problems.

An example of a record definition would be:

RECORD Car
 make : String
 model : String
 reg : String
 price : Real
 noOfDoors : Integer
ENDRECORD

3.2.7 Input/output

Content Additional information

Be able to obtain user input from the keyboard.

Be able to output data and information from a
program to the computer display.

3.2.8 String handling operations in a programming language

Content Additional information

Understand and be able to use:

• length
• position
• substring
• concatenation
• convert character to character code
• convert character code to character
• string conversion operations.

Expected string conversion operations:

• string to integer
• string to real
• integer to string
• real to string.

3.2.9 Random number generation in a programming language

Content Additional information

Be able to use random number generation. Students will be expected to use random
number generation within their computer
programs. An understanding of how pseudo-
random numbers are generated is not required.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 15

http://aqa.org.uk/8525

3.2.10 Structured programming and subroutines (procedures and
functions)

Content Additional information

Understand the concept of subroutines. Students should know that a subroutine is a
named ‘out of line’ block of code that may be
executed (called) by simply writing its name in a
program statement.

Explain the advantages of using subroutines in
programs.

Describe the use of parameters to pass data
within programs.

Students should be able to use subroutines that
require more than one parameter.

Students should be able to describe how data is
passed to a subroutine using parameters.

Use subroutines that return values to the calling
routine.

Students should be able to describe how data is
passed out of a subroutine using return values.

Know that subroutines may declare their own
variables, called local variables, and that local
variables usually:

• only exist while the subroutine is
executing

• are only accessible within the subroutine.

Use local variables and explain why it is good
practice to do so.

Describe the structured approach to
programming.

Students should be able to describe the
structured approach including modularised
programming, clear well-documented interfaces
(local variables, parameters) and return values.

Teachers should be aware that the terms
arguments and parameters are sometimes
used but in examinable material we will use the
term parameter to refer to both of these.

Explain the advantages of the structured
approach.

16 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3.2.11 Robust and secure programming

Content Additional information

Be able to write simple data validation routines. Students should be able to use data validation
techniques to write simple routines that check
the validity of data being entered by a user.

The following validation checks are examples of
simple data validation routines:

• checking if an entered string has a
minimum length

• checking if a string is empty
• checking if data entered lies within a

given range (eg between 1 and 10).

Be able to write simple authentication routines. Students should be able to write a simple
authentication routine that uses a username
and password. Students will only be required to
use plain text usernames and passwords (ie
students will not need to encrypt the
passwords).

Understand what is meant by testing in the
context of algorithms and programs.

Be able to correct errors within algorithms and
programs.

Understand what test data is and describe the
following types of test data:

• normal (typical)
• boundary (extreme)
• erroneous data.

Boundary data would be for example:

If the allowed range is 1 to 10, then boundary
data is 0, 1, 10, 11, ie either side of the allowed
boundary.

Be able to select and justify the choice of
suitable test data for a given problem.

Understand that there are different types of
error:

• syntax error
• logic error.

Be able to identify and categorise errors within
algorithms and programs.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 17

http://aqa.org.uk/8525

3.3 Fundamentals of data representation

3.3.1 Number bases

Content Additional information

Understand the following number bases:

• decimal (base 10)
• binary (base 2)
• hexadecimal (base 16).

Understand that computers use binary to
represent all data and instructions.

Students should be familiar with the idea that a
bit pattern could represent different types of
data including text, image, sound and integer.

Explain why hexadecimal is often used in
computer science.

3.3.2 Converting between number bases

Content Additional information

Understand how binary can be used to
represent whole numbers.

Students must be able to represent decimal
values between 0 and 255 in binary.

Understand how hexadecimal can be used to
represent whole numbers.

Students must be able to represent decimal
values between 0 and 255 in hexadecimal.

Be able to convert in both directions between:

• binary and decimal
• binary and hexadecimal
• decimal and hexadecimal.

The following equivalent maximum values will
be used:

• decimal: 255
• binary: 1111 1111
• hexadecimal: FF

3.3.3 Units of information

Content Additional information

Know that:

• a bit is the fundamental unit of information
• a byte is a group of 8 bits.

A bit is either a 0 or a 1.

• b represents bit
• B represents byte

18 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

Content Additional information

Know that quantities of bytes can be described
using prefixes.

Know the names, symbols and corresponding
values for the decimal prefixes:

• kilo, 1 kB is 1,000 bytes
• mega, 1 MB is 1,000 kilobytes
• giga, 1 GB is 1,000 Megabytes
• tera, 1 TB is 1,000 Gigabytes.

Be able to compare quantities of bytes using
the prefixes above.

Students might benefit from knowing that
historically the terms kilobyte, megabyte, etc
have often been used to represent powers of 2.

The International System of Units (SI units) kilo,
mega and so forth refer to values based on
powers of 10. When referring to powers of 2 the
terms kibi, mebi and so forth would normally be
used but students do not need to know these.

3.3.4 Binary arithmetic

Content Additional information

Be able to add together up to three binary
numbers.

Students will need to be able to add together up
to three binary numbers using a maximum of 8
bits per number.

Students will only be expected to add together
a maximum of three 1s in a single column.

Answers will be a maximum of 8 bits in length
and will not involve carrying beyond the 8th bit.

Be able to apply a binary shift to a binary
number.

Students will be expected to use a maximum of
8 bits.

Students will be expected to understand and
use only a logical binary shift.

Students will not need to understand or use
fractional representations.

Describe situations where binary shifts can be
used.

Binary shifts can be used to perform simple
multiplication/division by powers of 2.

3.3.5 Character encoding

Content Additional information

Understand what a character set is and be able
to describe the following character encoding
methods:

• 7-bit ASCII
• Unicode.

Students should be able to use a given
character encoding table to:

• convert characters to character codes
• convert character codes to characters.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 19

http://aqa.org.uk/8525

Content Additional information

Understand that character codes are commonly
grouped and run in sequence within encoding
tables.

Students should know that character codes are
grouped and that they run in sequence. For
example in ASCII ‘A’ is coded as 65, ‘B’ as 66,
and so on, meaning that the codes for the other
capital letters can be calculated once the code
for ‘A’ is known. This pattern also applies to
other groupings such as lower case letters and
digits.

Describe the purpose of Unicode and the
advantages of Unicode over ASCII.

Know that Unicode uses the same codes as
ASCII up to 127.

Students should be able to explain the need for
data representation of different alphabets and
of special symbols allowing a far greater range
of characters.

It is not necessary to be familiar with UTF-8,
UTF-16 or other different versions of Unicode.

3.3.6 Representing images

Content Additional information

Understand what a pixel is and be able to
describe how pixels relate to an image and the
way images are displayed.

Students should know that the term pixel is
short for picture element. A pixel is a single
point in an image.

Describe the following for bitmaps:

• image size
• colour depth.

Know that the size of a bitmap image is
measured in pixels (width x height).

The size of an image is expressed directly as
width of image in pixels by height of image in
pixels using the notation width x height.

Colour depth is the number of bits used to
represent each pixel.

Describe how a bitmap represents an image
using pixels and colour depth.

Students should be able to explain how bitmaps
are made from pixels.

Describe using examples how the number of
pixels and colour depth can affect the file size
of a bitmap image.

Students should be able to describe how higher
numbers of pixels and higher colour depths can
affect file size, and should also be able to use
examples.

Calculate bitmap image file sizes based on the
number of pixels and colour depth.

Students only need to use colour depth and
number of pixels within their calculations.

Size = (bits) = W x H x D

Size = (bytes) = (W x H x D)/8

W = image width

H = image height

D = colour depth in bits.

20 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

Content Additional information

Convert binary data into a bitmap image. Given a binary pattern that represents a simple
bitmap, students should be able to draw the
resulting image as a series of pixels.

Convert a bitmap image into binary data. Given a simple bitmap, students should be able
to write down a bit pattern that represents the
image.

3.3.7 Representing sound

Content Additional information

Understand that sound is analogue and that it
must be converted to a digital form for storage
and processing.

Understand that analogue signals are sampled
to create the digital version of sound.

Students should understand that a sample is a
measure of amplitude at a point in time.

Describe the digital representation of sound in
terms of:

• sampling rate
• sample resolution.

Sampling rate is the number of samples taken
in a second and is usually measured in hertz (1
hertz = 1 sample per second).

Sample resolution is the number of bits per
sample.

Calculate sound file sizes based on the
sampling rate and the sample resolution.

File size (bits) = rate x res x secs

rate = sampling rate

res = sample resolution

secs = number of seconds

3.3.8 Data compression

Content Additional information

Explain what data compression is.

Understand why data may be compressed and
that there are different ways to compress data.

Students should understand that it is common
for data to be compressed and should be able
to explain why it may be necessary or desirable
to compress data.

Explain how data can be compressed using
Huffman coding.

Be able to interpret Huffman trees.

Students should be familiar with the process of
using a tree to represent the Huffman code.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 21

http://aqa.org.uk/8525

Content Additional information

Be able to calculate the number of bits required
to store a piece of data compressed using
Huffman coding.

Be able to calculate the number of bits required
to store a piece of uncompressed data in ASCII.

Students should be familiar with carrying out
calculations to determine the number of bits
saved by compressing a piece of data using
Huffman coding.

Explain how data can be compressed using run
length encoding (RLE).

Students should be familiar with the process of
using frequency/data pairs to reduce the
amount of data stored.

Represent data in RLE frequency/data pairs. Students could be given a bitmap
representation and they would be expected to
show the frequency and value pairs for each
row,

eg 0000011100000011

would become 5 0 3 1 6 0 2 1.

3.4 Computer systems

3.4.1 Hardware and software

Content Additional information

Define the terms hardware and software and
understand the relationship between them.

3.4.2 Boolean logic

Content Additional information

Construct truth tables for the following logic
gates:

• NOT
• AND
• OR
• XOR.

Students do not need to know about or use
NAND and NOR logic gates.

Construct truth tables for simple logic circuits
using combinations of NOT, AND, OR and XOR
gates.

Interpret the results of simple truth tables.

Students should be able to construct truth
tables which contain up to three inputs.

22 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

Content Additional information

Create, modify and interpret simple logic circuit
diagrams.

Students will only need to use NOT, AND, OR
and XOR gates within logic circuits.

Students will be expected to understand and
use the following logic circuit symbols:

Students should be able to construct simple
logic circuit diagrams which contain up to three
inputs.

Create and interpret simple Boolean
expressions made up of NOT, AND, OR and
XOR operations.

Students will be expected to understand and
use the following Boolean expression
operators:

. to represent the AND gate
+ to represent the OR gate
⊕ to represent the XOR gate
Overbar to represent the NOT gate

For example the expression (A AND B) OR
(NOT C) would be represented as:

A .B + C̅

Create the Boolean expression for a simple
logic circuit.

Create a logic circuit from a simple Boolean
expression.

3.4.3 Software classification

Content Additional information

Explain what is meant by:

• system software
• application software.

Give examples of both types of software.

Students should understand that:

• system software manages the computer
system resources and acts as a platform
to run application software

• application software is software that
performs end-user tasks.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 23

http://aqa.org.uk/8525

Content Additional information

Understand the need for, and functions of,
operating systems (OS) and utility programs.

Understand that the OS handles management
of the:

• processor(s)
• memory
• input/output (I/O) devices
• applications
• security.

3.4.4 Classification of programming languages and translators
Content Additional information

Know that there are different levels of
programming language:

• low-level language
• high-level language.

Explain the main differences between low-level
and high-level languages.

Students should understand that most
computer programs are written in high-level
languages and be able to explain why this is the
case.

Know that machine code and assembly
language are considered to be low-level
languages and explain the differences between
them.

Students should be able to

• understand that processors execute
machine code and that each type of
processor has its own specific machine
code instruction set

• understand that assembly language is
often used to develop software for
embedded systems and for controlling
specific hardware components

• understand that assembly language has a
1:1 correspondence with machine code.

Understand that all programming code written
in high-level or assembly languages must be
translated.

Understand that machine code is expressed in
binary and is specific to a processor or family of
processors.

Understand the advantages and disadvantages
of low-level language programming compared
with high-level language programming.

24 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

Content Additional information

Understand that there are three common types
of program translator:

• interpreter
• compiler
• assembler.

Explain the main differences between these
three types of translator.

Understand when it would be appropriate to use
each type of translator.

Students will need to know that:

• assemblers and compilers translate their
input into machine code directly

• each line of assembly language is
assembled into a single machine code
instruction

• interpreters do not generate machine
code directly (they call appropriate
machine code subroutines within their
own code to carry out statements).

3.4.5 Systems architecture

Content Additional information

Explain the role and operation of main memory
and the following major components of a central
processing unit (CPU):

• arithmetic logic unit
• control unit
• clock
• register
• bus.

A bus is a collection of wires through which
data/signals are transmitted from one
component to another.

Knowledge of specific registers is not required.

Explain the effect of the following on the
performance of the CPU:

• clock speed
• number of processor cores
• cache size.

Understand and explain the Fetch-Execute
cycle.

The CPU continually reads instructions stored
in main memory and executes them as
required:

• fetch: the next instruction is fetched to the
CPU from main memory

• decode: the instruction is decoded to work
out what it is

• execute: the instruction is executed
(carried out). This may include reading/
writing from/to main memory.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 25

http://aqa.org.uk/8525

Content Additional information

Understand the different types of memory within
a computer:

• RAM
• ROM
• Cache
• Register.

Know what the different types of memory are
used for and why they are required.

Understand the differences between main
memory and secondary storage.

Understand the differences between RAM and
ROM.

Students should be able to explain the terms
volatile and non-volatile.

Main memory will be considered to be any form
of memory that is directly accessible by the
CPU (except for cache and registers).

Secondary storage is considered to be any non-
volatile storage mechanism not directly
accessible by the CPU.

Understand why secondary storage is required.

Be aware of different types of secondary
storage (solid state and magnetic).

Explain the operation of solid state and
magnetic storage.

Discuss the advantages and disadvantages of
solid state and magnetic storage.

Students should be aware that SSDs use
electrical circuits to persistently store data but
will not need to know the precise details such
as use of NAND gates.

Explain the term cloud storage. Students should understand that cloud storage
uses magnetic and/or solid state storage at a
remote location.

Explain the advantages and disadvantages of
cloud storage when compared to local storage.

Understand the term embedded system and
explain how an embedded system differs from a
non-embedded system.

Students must be able to give examples of
embedded and non-embedded systems.

26 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3.5 Fundamentals of computer networks
Content Additional information

Define what a computer network is.

Discuss the advantages and disadvantages of
computer networks.

Describe the main types of computer network
including:

• Personal Area Network (PAN)
• Local Area Network (LAN)
• Wide Area Network (WAN).

PAN – only Bluetooth needs to be considered.

LAN – know that these usually cover relatively
small geographical areas.

LAN – know that these are often owned and
controlled/managed by a single person or
organisation.

WAN – know that the Internet is the biggest
example of a WAN.

WAN – know that these usually cover a wide
geographic area.

WAN – know that these are often under
collective or distributed ownership.

Understand that networks can be wired or
wireless.

Discuss the advantages and disadvantages of
wireless networks as opposed to wired
networks.

Students should know that wired networks can
use different types of cable such as fibre and
copper and when each would be appropriate.

Define the term network protocol.

Explain the purpose of common network
protocols including:

• TCP (Transmission Control Protocol)
• IP (Internet Protocol)
• HTTP (Hypertext Transfer Protocol)
• HTTPS (Hypertext Transfer Protocol

Secure)
• email protocols:

• SMTP (Simple Mail Transfer Protocol)
• IMAP (Internet Message Access

Protocol).

Students should know what each protocol is
used for (eg HTTPS provides an encrypted
version of HTTP for more secure web
transactions).

Understand the need for, and importance of,
network security.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 27

http://aqa.org.uk/8525

Content Additional information

Explain the following methods of network
security:

• authentication
• encryption
• firewall
• MAC address filtering.

Students should be able to explain, using
examples, what each of these security methods
is and when each could be used.

Students should understand how these
methods can work together to provide a greater
level of security.

The capabilities of firewalls have changed
dramatically in recent years and will continue to
do so. Students should be aware that a firewall
is a network security device that monitors
incoming and outgoing network traffic and
decides whether to allow or block specific traffic
based on a defined set of security rules.

Students should understand that MAC address
filtering allows devices to access, or be blocked
from accessing a network based on their
physical address embedded within the device’s
network adapter.

Describe the 4 layer TCP/IP model:

• application layer
• transport layer
• internet layer
• link layer.

Understand that the HTTP, HTTPS, SMTP and
IMAP protocols operate at the application layer.

Understand that the TCP protocol operates at
the transport layer.

Understand that the IP protocol operates at the
internet layer.

Students should be able to name the layers and
describe their main function(s) in a networking
environment.

Application layer: this is where the network
applications, such as web browsers or email
programs, operate.

Transport layer: this layer sets up the
communication between the two hosts and they
agree settings such as the size of packets.

Internet layer: addresses and packages data for
transmission. Routes the packets across the
network.

Link layer: this is where the network hardware
such as the NIC (network interface card) is
located. OS device drivers also operate here.

28 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3.6 Cyber security

3.6.1 Fundamentals of cyber security

Content Additional information

Be able to define the term cyber security and be
able to describe the main purposes of cyber
security.

Students should know that cyber security
consists of the processes, practices and
technologies designed to protect networks,
computers, programs and data from attack,
damage or unauthorised access.

3.6.2 Cyber security threats

Content Additional information

Understand and be able to explain the following
cyber security threats:

• social engineering techniques
• malicious code (malware)
• pharming
• weak and default passwords
• misconfigured access rights
• removable media
• unpatched and/or outdated software.

Pharming is a cyber attack intended to redirect
a website's traffic to a fake website.

Explain what penetration testing is and what it
is used for.

Penetration testing is the process of attempting
to gain access to resources without knowledge
of usernames, passwords and other normal
means of access.

Students should understand the following two
types of penetration testing:

• when the person or team testing the
system has knowledge of and possibly
basic credentials for the target system,
simulating an attack from inside the
system (a malicious insider)

• when the person or team testing the
system has no knowledge of any
credentials for the target system,
simulating an attack from outside the
system (an external attack).

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 29

http://aqa.org.uk/8525

3.6.2.1 Social engineering

Content Additional information

Define the term social engineering.

Describe what social engineering is and how it
can be protected against.

Explain the following forms of social
engineering:

• blagging (pretexting)
• phishing
• shouldering (or shoulder surfing).

Students should know that social engineering is
the art of manipulating people so they give up
confidential information.

Blagging is the act of creating and using an
invented scenario to engage a targeted victim in
a manner that increases the chance the victim
will divulge information or perform actions that
would be unlikely in ordinary circumstances.

Phishing is a technique of fraudulently obtaining
private information, often using email or SMS.

Shouldering is observing a person's private
information over their shoulder eg cashpoint
machine PIN numbers.

3.6.2.2 Malicious code (malware)

Content Additional information

Define the term malware.

Describe what malware is and how it can be
protected against.

Describe the following forms of malware:

• computer virus
• trojan
• spyware.

Malware is an umbrella term used to refer to a
variety of forms of hostile or intrusive software.

3.6.3 Methods to detect and prevent cyber security threats

Content Additional information

Understand and be able to explain the following
security measures:

• biometric measures (particularly for
mobile devices)

• password systems
• CAPTCHA (or similar)
• using email confirmations to confirm a

user’s identity
• automatic software updates.

30 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3.7 Relational databases and structured query language
(SQL)

3.7.1 Relational databases
Content Additional information

Explain the concept of a database.

Explain the concept of a relational database.

Understand the following database concepts:

• table
• record
• field
• data type
• primary key
• foreign key.

Understand that the use of a relational
database facilitates the elimination of data
inconsistency and data redundancy.

Note that whilst the terms entity, attribute and
entity identifier are more commonly used when
an abstract model of a database is being
considered, the terms given here will be used
for both implementations of and abstract
models of databases.

3.7.2 Structured query language (SQL)
Content Additional information

Be able to use SQL to retrieve data from a
relational database, using the commands:

• SELECT
• FROM
• WHERE
• ORDER BY…ASC | DESC

Exam questions will require that data is
extracted from no more than two tables for any
one query.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 31

http://aqa.org.uk/8525

Content Additional information

Be able to use SQL to insert data into a
relational database using the commands.

INSERT INTO table_name (column1,
column 2 …)
VALUES (value1, value2 …)

Be able to use SQL to edit and delete data in a
database using the commands.

UPDATE table_name
SET column1 = value1, column2
= value2 ...
WHERE condition

DELETE FROM table_name WHERE
condition

32 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

3.8 Ethical, legal and environmental impacts of digital
technology on wider society, including issues of privacy
Content Additional information

Explain the current ethical, legal and
environmental impacts and risks of digital
technology on society. Where data privacy
issues arise these should be considered.

Exam questions will be taken from the following
areas:

• cyber security
• mobile technologies
• wireless networking
• cloud storage
• hacking (unauthorised access to a

computer system)
• wearable technologies
• computer based implants
• autonomous vehicles.

Students will be expected to understand and
explain the general principles behind the issues
rather than have detailed knowledge on specific
issues.

Students should be aware that ordinary citizens
normally value their privacy and may not like it
when governments or security services have
too much access.

Students should be aware that governments
and security services often argue that they
cannot keep their citizens safe from terrorism
and other attacks unless they have access to
private data.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 33

http://aqa.org.uk/8525

34 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

4 Scheme of assessment
Find past papers and mark schemes, and sample papers for new courses, on our website at
aqa.org.uk/pastpapers

This specification is designed to be taken over two years.

This is a linear qualification. In order to achieve the award, students must complete all
assessments at the end of the course and in the same series.

GCSE exams and certification for this specification are available for the first time in May/June 2027
and then every May/June for the life of the specification.

All materials are available in English only.

Our GCSE exams in Computer Science include questions that allow students to demonstrate their
ability to:

• recall information
• demonstrate programming skills
• apply their knowledge and understanding
• draw together information from different areas of the specification.

4.1 Aims and learning outcomes
Courses based on this specification must encourage students to:

• build on their knowledge, understanding and skills established through the computer science
elements of the programme of study for computing at Key Stage 3 and Key Stage 4

• enable students to progress into further learning and/or employment
• understand and apply the fundamental principles and concepts of computer science,

including abstraction, decomposition, logic, algorithms, and data representation
• analyse problems in computational terms through practical experience of solving such

problems, including designing, writing and debugging programs
• think creatively, innovatively, analytically, logically and critically
• understand the components that make up digital systems, and how they communicate with

one another and with other systems
• understand the impacts of digital technology to the individual and to wider society
• apply maths skills relevant to computer science.

4.2 Assessment objectives
Assessment objectives (AOs) are set by Ofqual and are the same across all GCSE Computer
Science specifications and all exam boards.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 35

http://www.aqa.org.uk/pastpapers
http://aqa.org.uk/8525

The exams will measure how students have achieved the following assessment objectives.

• AO1: Demonstrate knowledge and understanding of the key concepts and principles of
computer science.

• AO2: Apply knowledge and understanding of key concepts and principles of computer
science.

• AO3: Analyse problems in computational terms:
• to make reasoned judgements
• to design, program, evaluate and refine solutions.

4.2.1 Assessment objective weightings for GCSE Computer Science
Assessment objectives
(AOs)

Component weightings (approx %) Overall weighting
(approx %)Paper 1 Paper 2

AO1 4.4 25.6 30

AO2 20 20 40

AO3 25.6 4.4 30

Overall weighting of
components

50 50 100

4.3 Assessment weightings
Final marks will be calculated by adding together the scaled marks for each component. Grade
boundaries will be set using this total scaled mark. The scaling and total scaled marks are shown
in the table below.

Component Maximum raw mark Scaling factor Maximum scaled mark

Paper 1 90 x1 90

Paper 2 90 x1 90

Total scaled mark: 180

36 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

5 Programming skills
A key part of the delivery of this specification is the development of students’ programming skills.
Throughout their course of study, students must be given the opportunity to design, write, test and
refine, using one or more high-level programming language(s) with a textual program definition. In
developing these skills schools and colleges are free to choose the context (ie they can be
developed in relation to solving a specific problem or to a specification).

In assessments where programming skills are assessed, we will assess students’ ability to:

• design
• write
• test, and
• refine

a program to a set task/brief (or to solve a problem). Students are free to use any of the
programming languages supported by this specification at the time of their assessment.

5.1 Programming skills authentication
The head of the school or college is responsible for making sure that the programming skills are
delivered as an essential part of the course.To meet Ofqual’s qualification and subject criteria,
schools and colleges must provide a 'Practical programming statement'.

The ‘Practical programming statement’ is a true and accurate written statement made by each
school or college which confirms that it has taken reasonable steps to ensure that each learner has
had the opportunity to undertake a programming task or tasks that allows students to develop the
required skills.

The ‘Practical programming statement’ will be provided by us.

5.2 Avoiding malpractice
The school or college must submit to us a ‘Practical programming statement’ which confirms that
all students undertaking this course of study have had the opportunity to develop the skills outlined
above.

Failure to complete the ‘Practical programming statement’ and return it to us in good time will be
considered malpractice/maladministration and may result in the school or college being referred to
our irregularities team.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 37

http://aqa.org.uk/8525

38 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://aqa.org.uk/8525

6 General administration
You can find information about all aspects of administration, as well as all the forms you need, at
aqa.org.uk/examsadmin

6.1 Entries and codes
You only need to make one entry for each qualification – this will cover the question papers and
certification.

Every specification is given a national discount (classification) code by the Department for
Education (DfE), which indicates its subject area.

If a student takes two specifications with the same discount code:

• further and higher education providers are likely to take the view that they have only
achieved one of the two qualifications

• only one of them will be counted for the purpose of the School and College Performance
tables – the DfE's rules on 'early entry' will determine which one.

Please check this before your students start their course.

Qualification title Option AQA entry code DfE discount code

AQA GCSE in Computer Science Option A (C#) 8525A CK1

Option B (Python) 8525B CK1

Option C
(VB.NET)

8525C CK1

This specification complies with:

• Ofqual General conditions of recognition that apply to all regulated qualifications
• Ofqual GCSE qualification level conditions that apply to all GCSEs
• Ofqual GCSE subject level conditions that apply to all GCSEs in this subject
• all other relevant regulatory documents.

The Ofqual qualification accreditation number (QAN) is 601/8301/9.

6.2 Overlaps with other qualifications
There are no overlaps with any other AQA qualifications at this level.

6.3 Awarding grades and reporting results
The qualification will be graded on a nine-point scale: 1 to 9 – where 9 is the best grade.

A student taking Foundation tier assessments will be awarded a grade within the range of 1 to 5.
Students who fail to reach the minimum standard for grade 1 will be recorded as U (unclassified)
and will not receive a qualification certificate.

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 39

http://aqa.org.uk/examsadmin
http://aqa.org.uk/8525

A student taking Higher tier assessments will be awarded a grade within the range of 4 to 9. A
student sitting the Higher tier who just fails to achieve grade 4 will be awarded an allowed grade 3.
Students who fail to reach the minimum standard for the allowed grade 3 will be recorded as U
(unclassified) and will not receive a qualification certificate.

6.4 Resits and shelf life
Students can resit the qualification as many times as they wish, within the shelf life of the
qualification.

6.5 Previous learning and prerequisites
There are no previous learning requirements. Any requirements for entry to a course based on this
specification are at the discretion of schools and colleges.

6.6 Access to assessment: diversity and inclusion
General qualifications are designed to prepare students for a wide range of occupations and
further study. Therefore our qualifications must assess a wide range of competences.

The subject criteria have been assessed to see if any of the skills or knowledge required present
any possible difficulty to any students, whatever their ethnic background, religion, sex, age,
disability or sexuality. Tests of specific competences were only included if they were important to
the subject.

As members of the Joint Council for Qualifications (JCQ) we participate in the production of the
JCQ document Access Arrangements and Reasonable Adjustments: General and Vocational
qualifications. We follow these guidelines when assessing the needs of individual students who
may require an access arrangement or reasonable adjustment. This document is published at
jcq.org.uk

Students with disabilities and special needs
We're required by the Equality Act 2010 to make reasonable adjustments to remove or lessen any
disadvantage that affects a disabled student.

We can make arrangements for disabled students and students with special needs to help them
access the assessments, as long as the competences being tested aren't changed. Access
arrangements must be agreed before the assessment. For example, a Braille paper would be a
reasonable adjustment for a Braille reader.

To arrange access arrangements or reasonable adjustments, you can apply using the online
service at aqa.org.uk/eaqa

Special consideration
We can give special consideration to students who have been disadvantaged at the time of the
assessment through no fault of their own – for example a temporary illness, injury or serious
problem such as family bereavement. We can only do this after the assessment.

Your exams officer should apply online for special consideration at aqa.org.uk/eaqa

40 Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration

http://www.jcq.org.uk/
http://www.aqa.org.uk/eaqa
http://www.aqa.org.uk/eaqa
http://aqa.org.uk/8525

For more information and advice visit aqa.org.uk/access or email
accessarrangementsqueries@aqa.org.uk

6.7 Working with AQA for the first time
If your school or college hasn't previously offered our specifications, you need to register as an
AQA centre. Find out how at aqa.org.uk/becomeacentre

6.8 Private candidates
This specification is available to private candidates.

A private candidate is someone who enters for exams through an AQA approved school or college
but is not enrolled as a student there.

A private candidate may be self-taught, home schooled or have private tuition, either with a tutor or
through a distance learning organisation. They must be based in the UK.

If you have any queries as a private candidate, you can:

• speak to the exams officer at the school or college where you intend to take your exams
• visit our website at aqa.org.uk/privatecandidates
• email privatecandidates@aqa.org.uk

AQA GCSE Computer Science 8525. GCSE exams June 2027 onwards. Version 1.3 16 June 2025

Visit aqa.org.uk/8525 for the most up-to-date specification, resources, support and administration 41

http://www.aqa.org.uk/access
mailto:accessarrangementsqueries@aqa.org.uk
http://www.aqa.org.uk/becomeacentre
http://www.aqa.org.uk/privatecandidates
mailto:privatecandidates@aqa.org.uk
http://aqa.org.uk/8525

Get help and support
Visit our website for information, guidance, support and resources at aqa.org.uk/8525

You can talk directly to the Computer Science subject team:

E: computerscience@aqa.org.uk

T: 0161 957 3980

aqa.org.uk
Copyright © 2022 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, schools and colleges registered with AQA are
permitted to copy material from this specification for their own internal use.
AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales
(company number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

http://aqa.org.uk/8525
mailto:computerscience@aqa.org.uk

	Contents
	1 Introduction
	1.1 Why choose AQA for GCSE Computer Science
	1.2 Support and resources to help you teach
	1.2.1 Teaching resources
	Preparing for exams
	Analyse your students' results with Data Insights
	Keep your skills up-to-date with professional development
	Help and support

	2 Specification at a glance
	2.1 Subject content
	2.2 Assessments

	3 Subject content
	3.1 Fundamentals of algorithms
	3.1.1 Representing algorithms
	3.1.2 Efficiency of algorithms
	3.1.3 Searching algorithms
	3.1.4 Sorting algorithms

	3.2 Programming
	3.2.1 Data types
	3.2.2 Programming concepts
	3.2.3 Arithmetic operations in a programming language
	3.2.4 Relational operations in a programming language
	3.2.5 Boolean operations in a programming language
	3.2.6 Data structures
	3.2.7 Input/output
	3.2.8 String handling operations in a programming language
	3.2.9 Random number generation in a programming language
	3.2.10 Structured programming and subroutines (procedures and functions)
	3.2.11 Robust and secure programming

	3.3 Fundamentals of data representation
	3.3.1 Number bases
	3.3.2 Converting between number bases
	3.3.3 Units of information
	3.3.4 Binary arithmetic
	3.3.5 Character encoding
	3.3.6 Representing images
	3.3.7 Representing sound
	3.3.8 Data compression

	3.4 Computer systems
	3.4.1 Hardware and software
	3.4.2 Boolean logic
	3.4.3 Software classification
	3.4.4 Classification of programming languages and translators
	3.4.5 Systems architecture

	3.5 Fundamentals of computer networks
	3.6 Cyber security
	3.6.1 Fundamentals of cyber security
	3.6.2 Cyber security threats
	3.6.2.1 Social engineering
	3.6.2.2 Malicious code (malware)

	3.6.3 Methods to detect and prevent cyber security threats

	3.7 Relational databases and structured query language (SQL)
	3.7.1 Relational databases
	3.7.2 Structured query language (SQL)

	3.8 Ethical, legal and environmental impacts of digital technology on wider society, including issues of privacy

	4 Scheme of assessment
	4.1 Aims and learning outcomes
	4.2 Assessment objectives
	4.2.1 Assessment objective weightings for GCSE Computer Science

	4.3 Assessment weightings

	5 Programming skills
	5.1 Programming skills authentication
	5.2 Avoiding malpractice

	6 General administration
	6.1 Entries and codes
	6.2 Overlaps with other qualifications
	6.3 Awarding grades and reporting results
	6.4 Resits and shelf life
	6.5 Previous learning and prerequisites
	6.6 Access to assessment: diversity and inclusion
	Students with disabilities and special needs
	Special consideration

	6.7 Working with AQA for the first time
	6.8 Private candidates

